경사법1 4-2. 신경망 학습 4.4. 기울기 앞 절에서는 x0 와 x1 의 편미분을 변수별로 따로 계산했다. 가령 x0 = 3, x1 = 4 일 때 (x0 , x1) 양쪽의 편미분을 묶어 계산한다고 생각해보자. 위처럼 모든 변수의 편미분을 벡터로 정리한 것을 기울기(gradient)라고 한다. 기울기는 다음과 같이 구현할 수 있다. def numerical_gradient(f, x): h = 1e-4 #0.0001 grad = np.zeros_like(x) #x와 형상이 같은 zero 배열 생성 for idx in range(x.size): tmp_val = x[idx] # f(x+h) 계산 x[idx] = tmp_val + h fxh1 = f(x) # f(x-h) 계산 x[idx] = tmp_val - h fxh2 = f(x) g.. 2020. 3. 25. 이전 1 다음