본문 바로가기

regression2

[딥러닝의 기본] Linear Regression 의 개념 ML lec 02 - Linear Regression의 Hypothesis 와 cost 설명 하나의 지도학습을 가정해보자. 예측하는 최종목표가 점수(0~100) 예측이라면 regression 모델이다. 이런 데이터를 가지고 학습시키는 과정을 training이라 하고, x와 y를 training data라고 한다. 데이터를 가지고 학습하면 모델을 만들고 학습이 끝난다. regression을 사용한다는 것은 7시간 공부한 학생의 점수를 시험 치기 전에 예측하는 일이다. 이러한 예측은 선형 회귀, Linear Regression이라 한다. Linear Regression이 어떻게 동작하는지 보겠다. 설명을 위해 간단한 dataset이 있다. x는 예측을 위한 자료 또는 feature다. y는 예측 대상이다. .. 2020. 5. 20.
[딥러닝의 기본] 머신러닝의 개념과 용어 책 『밑바닥부터 시작하는 딥러닝』을 공부하면서 김성훈 교수님의 강의 를 듣게 되었다. 따라서 정리를 하고자 포스팅 한다. Lec 00 - Machine/Deep learning 수업의 개요와 일정 강의 대상은 아래와 같다. 머신러닝을 블랙박스처럼 사용하고 싶은 사람은 본 강의를 들으면 좋다고 한다. 즉, 우리는 머신러닝 원리 안에 무엇이 들어있는지 모르는 채로 입력값으로 도출된 출력값으로 무언갈 할 수 있다. 만약 머신러닝을 이해한다면 블랙박스를 효율적으로 이용하여 출력값을 만들어낼 수 있을 것이다. 강의 목표는 아래와 같다. 김성훈 교수님이 강의를 만드는 데는 아래의 링크들을 참고하셨다고 한다. Andrew Ng 교수님의 ML 강의 강의를 요약한 노트 사이트 CNN 강의 TensorFlow 공식 웹사이.. 2020. 5. 20.