linear regression2 [딥러닝의 기본] Linear Regression cost 함수 최소화 ML lec 03 - Linear Regression의 cost 최소화 알고리즘의 원리 설명 가설과 실제 값의 차를 최소화할 수 있는 W와 b를 찾는 것이 Linear Regression의 목표다. 설명을 위해서 hypothesis를 간단히 했다. 편향 b를 없애고 가중치 W만 가진다. W 값에 따라 cost 함수는 어떻게 될지 본다. W에 따라 cost(W)가 어떻게 변할지 그래프를 그려볼 수 있다. 우리는 cost 함수가 최소화되게끔 찾아야 하기 때문에 최소화된 점을 찾는다. 여기선 (1,0)이지만 기계적으로 찾아야 한다. 최솟값을 찾을 때 많이 사용되는 알고리즘이 경사하강법 Gradient descent algorithm이다. 만약 언덕 위에 있다면 주변에 있는 경사진 곳을 찾아 내려가는 간단한 방.. 2020. 5. 20. [딥러닝의 기본] Linear Regression 의 개념 ML lec 02 - Linear Regression의 Hypothesis 와 cost 설명 하나의 지도학습을 가정해보자. 예측하는 최종목표가 점수(0~100) 예측이라면 regression 모델이다. 이런 데이터를 가지고 학습시키는 과정을 training이라 하고, x와 y를 training data라고 한다. 데이터를 가지고 학습하면 모델을 만들고 학습이 끝난다. regression을 사용한다는 것은 7시간 공부한 학생의 점수를 시험 치기 전에 예측하는 일이다. 이러한 예측은 선형 회귀, Linear Regression이라 한다. Linear Regression이 어떻게 동작하는지 보겠다. 설명을 위해 간단한 dataset이 있다. x는 예측을 위한 자료 또는 feature다. y는 예측 대상이다. .. 2020. 5. 20. 이전 1 다음